

Acadia Pharmaceuticals Inc. is providing this letter in response to your unsolicited request for medical information. It is for scientific-exchange and individual educational purposes only, and should not be copied or distributed. Information included in this letter may not be consistent with the US FDA-approved Prescribing Information for NUPLAZID® (pimavanserin) or may be related to unapproved uses of NUPLAZID. This letter is not intended to advocate any unapproved or approved use, indication, dosage, or other treatment-related decision. Acadia strives to provide current, accurate, and fair-balanced information in compliance with current industry information dissemination guidelines.

For further information regarding Indication, **Boxed WARNING** and other Important Safety Information for NUPLAZID, please click here: <u>Prescribing Information</u>.

NUPLAZID[®] (pimavanserin): Effect on QT Interval

This letter is provided in response to your specific request for information on the effect of pimavanserin on QT interval.

Relevant Labeling Information¹

NUPLAZID prolongs the QT interval (~5–8 milliseconds). NUPLAZID should be avoided in patients with known QT prolongation or in combination with other drugs known to prolong the QT interval.

NUPLAZID should also be avoided in patients with a history of cardiac arrhythmias, as well as other circumstances that may increase the risk of the occurrence of torsade de pointes and/or sudden death, including symptomatic bradycardia, hypokalemia or hypomagnesemia, and the presence of congenital prolongation of the QT interval.

Summary

- Investigation of the electrocardiographic effects of pimavanserin resulted in no meaningful effects on heart rate, pulse rate, or QRS intervals in <u>ACP-103-018</u> (<u>Thorough QT [TQT] study</u>) or <u>placebo-controlled Phase 2b/3 studies</u> in Parkinson's disease psychosis (PDP).^{2,3}
- Pimavanserin has a mild-to-moderate propensity to increase the corrected QT interval (QTc) and may thus have a proarrhythmic risk.³
 - Pooled analysis from Phase 2b/3 studies (N=157) indicates a <u>mean increase</u> in QTc using Fridericia's formula (QTcF) of 6.9 milliseconds (upper 90% confidence interval [CI] of 10.0 milliseconds) with pimavanserin 34 mg once daily.³

TQT Study

Background

The study design for the **TQT Study** is shown in **Figure 1**.² Electrocardiograms (ECGs) and concurrent pharmacokinetic (PK) samples were analyzed in a blinded fashion by a core ECG laboratory (eRT, Inc).

[§]Equal numbers of males (n=126) and females (n=126) were randomized. *moxifloxacin provided on Day 20 only. [†]ECGs and PK samples were collected in triplicate on Day. 1 and 20 at recu

[†]*ECGs and PK samples were collected in triplicate on Day -1 and 20 at regular intervals between 1–23.5 hours post-dose. Abbreviations: ECG=electrocardiograms; PK=pharmacokinetic; QTc=corrected QT interval; TQT=Thorough QT.*

ECG Results

During the TQT study, the maximum studied dose (68 mg) yielded a median observed plasma concentration (C_p) of 155 ng/mL, and a median maximum concentration (C_{max}) of 197 ng/mL, which is approximately 2.5-fold higher than the median C_{max} associated with pimavanserin 34 mg/day.³ There was no meaningful effect on heart rate, pulse rate, or QRS intervals. The placebo-adjusted change from baseline individualized corrected-QT interval (QTcI) is shown in **Table 1**.

Table 1. Maximal Mean Placebo-adjusted Change from Baseline: Individual Corrected QT interval³

	Pimavanserin 17 mg/day (n=60)	Pimavanserin 68 mg/day (n=72)
Maximal Mean Δ - Δ QTcI mean	4.7 ms	13.9 ms
(upper 90% CI)	(6.8 ms)	(15.9 ms)

Abbreviations: CI=confidence interval; ms=milliseconds; QTcI=individualized corrected QT interval.

There was no meaningful outlier effect. No participants receiving pimavanserin had an absolute QTcI > 480 milliseconds or an increase from baseline > 60 milliseconds.³ One (1) participant receiving pimavanserin 68 mg/day had an increase from baseline in the QTcI of between 30 and 60 milliseconds.

Treatment-emergent Adverse Events of Proarrhythmic Potential

Syncope as a treatment-emergent adverse event (TEAE) was reported in 2 of 72 participants (2.8%) in the pimavanserin 68 mg group and 1 of 59 participants (1.7%) in the placebo/moxifloxacin group.² No additional TEAEs suggestive of proarrhythmic potential or clinically significant cardiovascular-related TEAEs were reported in any treatment group.

Exposure-response Analysis

Pimavanserin exposure-response (E-R) modeling was performed with data from the TQT study.³ A mixed linear effects model was initially used to examine the PK/QTc relationship with

A C A D I A

pimavanserin, but additional E-R modeling demonstrated that a 2-part regression was superior in properly representing the data. Ultimately, two "optimal" models were selected. Overall, the models suggest that an increase in QTc is minimal or absent following a rapid increase in the QTcI, above a threshold concentration (~86 ng/mL). Based on these models, with a daily dose of 34 mg (for which the expected Cp is ~70 ng/mL), the upper 90% CI of the increase in the QTcI is ~11 milliseconds.

Potential limitations of the E-R modeling include concentrations of pimavanserin metabolite AC-279 were not determined, and AC-279-specific electrophysiologic effects were not delineated.³ However, the thorough QT E-R model for pimavanserin, although based on pimavanserin concentrations, would include effects of both parent and metabolite. This model was used to predict the QTcI values at the 17 mg/day and 68 mg/day doses (**Table 2**). Predicted values show an overall good correlation with the observed values in the TQT study, supporting the overall clinical relevance of the E-R modeling with pimavanserin.

Table 2. Observed Increase in QTcI at Steady State as a Result of the C_{max} Associated with Range of Doses³

$\mathbf{D}_{\alpha\alpha\alpha}$ (mg)	Median C _{max} Values	Increase in QTcI (ms)		
Dose (mg)	Obtained	QTcI by eRT	Model 1C	Model 1D
17	43	4.7	4.6	4.9
68	197	13.9	12.0	10.5

Note: Values derived from TQT study and PK modeling.

Abbreviations: C_{max} =maximum concentration; eRT=eRT Inc; ms=millisecond; QTcI=individualized corrected QT interval; TQT=Thorough QT.

Placebo-controlled Phase 2b/3 Studies

Background

Safety data were pooled from 3 randomized, double-blind, placebo-controlled Phase 2b/3 and Phase 3 studies in PDP:³

- **Study 012**: Phase 2b/3 study (N=298) that evaluated the safety and efficacy of once daily pimavanserin 8.5 mg and 34 mg vs placebo for up to 6 weeks.
- **Study 014**: Phase 2b/3 study that evaluated the safety and efficacy of once daily pimavanserin 8.5 mg and 17 mg vs placebo in 123 participants (original planned sample size was 279) for up to 6 weeks.
- **Study 020**: Pivotal phase 3 study (N=199) that evaluated safety and efficacy of once daily pimavanserin 34 mg vs placebo for up to 6 weeks.

Standard 12-lead ECG tracings and PK samples were obtained at Screening, Day 1 (Baseline, prior to initial dosing), Week 1 (Studies 012 and 014 only; no PK sample), and Weeks 2, 4, and 6, generally at trough (note: the difference between C_{max} and trough is ~10%).³ Initially the ECGs were machine-read, but after evaluating the results of the TQT study, the decision was made to have the ECGs analyzed by a core ECG laboratory. Most ECGs were available for this core laboratory review and an analysis demonstrated that there was no informative censoring.

A C A D I A

ECG Results

Similar to the TQT study, there was no meaningful effect on heart rate, pulse rate, or QRS intervals.³ The placebo-subtracted corrected QT interval using QTcF data showed no meaningful effect of pimavanserin on cardiac repolarization at the 8.5 mg/day dose and a mild degree of QTcF prolongation at 34 mg/day (**Table 3**).

Table 3. Maximal Mean Placebo-Adjusted Change from Baseline: QTcF³

Pimavanserin 8.5 mg/day: Study 012 (n=66)	Pimavanserin 34 mg/day: Pooled data from Studies 012 and 020 (n=157)
1.4 ms	6.9 ms
(5.6 ms)	(10.0 ms*)
	8.5 mg/day: Study 012 (n=66) 1.4 ms

*At Day 8, ECGs were only available in Study 012, where the change from baseline in the QTcF was 6.1 milliseconds (upper 90% CI of 10.9 milliseconds)

Abbreviations: CI=confidence interval; ms=milliseconds; QTcF=corrected QT interval using Fridericia's formula.

The QTcF outlier analyses demonstrated a lack of meaningful differences in outliers with a QTcF >480 milliseconds or an increase in QTcF >60 milliseconds (**Table 4**).³ However, there was a higher incidence in the pimavanserin cohort in the QTc increase from baseline of 30-60 milliseconds in the pimavanserin 34 mg group. This likely represents the mild-moderate QTcF prolonging effect of pimavanserin.

Table 4. Core Lab Analysis – QTc Outlier Analysis³

	Pimavanserin		— Dlaasha
n (%)	8.5 mg/day (n=67)	34 mg/day (n=164)	- Placebo (n=150)
QTcF >480 ms (Baseline value ≤480 ms)	2 (3.0%)	4 (2.4%)	5 (3.3%)
QTcF >500 ms (Baseline value ≤500 ms)	0 (0.0%)	1 (0.6%)	0 (0.0%)
Increase in QTcF 30–60 ms	5 (7.5%)	32 (19.5%)	11 (7.3%)
Increase in QTcF >60 ms	0 (0.0%)	0 (0.0%)	1 (0.7%)

Abbreviations: ms=milliseconds; QTcF=corrected QT interval using Fridericia's formula.

Potential Arrhythmic Adverse Events

The occurrence of potential arrhythmic events that might represent a ventricular arrhythmia such as sudden death, cardiac arrest, presyncope, and syncope were evaluated in the adverse event reporting database from the 3 pooled studies.³ During the studies, there were no reported cardiac arrests or sudden deaths in participants receiving pimavanserin. One (1) participant died of a myocardial infarction and, since the participant was found dead in bed, this likely represented a cardiac arrest. One (1) participant in the placebo group had a cardiorespiratory arrest that, upon review, appears to have been a primary cardiac arrest. Two (2) participants receiving pimavanserin (1 each receiving 8.5 mg and 34 mg) had syncopal episodes. In 1 participant, the event was documented to be due to "asystole" and was treated with a pacemaker. One (1) participant in the placebo group had a presyncopal event. Thus, there were 2 potential tachyarrhythmic events in participants receiving pimavanserin (0.52%, 2/383) and 2 in participants receiving placebo (0.87%, 2/231).

ACADIA

Exposure-response Analysis

Pimavanserin E-R modeling was performed with data from the Phase 2b/3 studies using the optimal PK/PD model with a two-part regression approach, similar to TQT study.³ The optimal PK/PD model demonstrated a relative plateau above a plasma concentration of ~40 ng/mL (the 34 mg dose is associated with a median C_{max} of ~71 ng/mL in participants). The model-predicted change in QTcF value from baseline for the pimavanserin 34 mg dose was the same as for the plateau. The upper bound of the 90% CI was approximately 10 milliseconds.

References

- 1. NUPLAZID[®] (pimavanserin) [package insert]. San Diego, CA. Acadia Pharmaceuticals Inc. [Link]
- 2. Acadia Pharmaceuticals Inc. Data on File. San Diego, CA.
- 3. Acadia Pharmaceutical Inc. NUPLAZID[®] Sponsor Background Information for a Meeting of the Psychopharmacologic Drugs Advisory Committee on 29 March 2016.